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ABSTRACT

This report presents the results of a test of the numerical accuracy
of some Toeplitz equation-solving algorithms. A typical autocorrelation
function of signal plus noise was used to form the Toeplitz coefficient
matrix. Thirty separate data sets of systems of order 4 through 128 were
formed, and the resulting equations were solved by each of four different
algorithms. IMSL'S LEQT1F Gauss elimination procedure, run in double
precision, was used as the standard for comparison of accuracies. The
results show that the Levinson algorithm is to be recommended for small
(order <^ 16) systems to which it is applicable. Otherwise, the algorithm
of choice is the Bareiss algorithm.
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1.0 Introduction

This report outlines the results of a numerical comparison of several

methods for solving Toeplitz equations. A moderately thorough review of

recent literature in the fields of electrical engineering, mathematics,

and computing revealed the existence of three different algorithms

tailored specifically for solution of these equations. One is applicable

only in special (but important) cases; we include it in our comparison.

The Toeplitz matrix arises in a variety of problems in electrical

engineering. The most familiar of these are probably (1) problems in

electromagnetic theory involving integral equations with difference kernels

such as in the numerical solution of Hallen's equation for a thin cylindri-

cal antenna [1] , and (2) problems in discrete linear filtering and prediction

theory where the Toeplitz matrix arises from the calculation of the auto-

correlation matrix [4], [5], [8], [9], [10].

The elements of a Toeplitz matrix depend only on the difference between

column and row number, j - i, rather than on i and j independently. A

general Toeplitz matrix is of the form

p
l

p 2

P P

1

p-l p

p-n+l p -n+2

and the system of equations to be solved is

T X = C
n+1



where X is an nxl vector of unknowns and C is the nxl vector of

constants.

It is easily observed that T is persymmetric , that is, symmetric

about the cross diagonal which extends from lower left to upper right.

Further, the elements on a given codiagonal are all the same. In applica-

tions the Toeplitz matrix is frequently symmetric in which case p . = p . .

We will only consider real symmetric Toeplitz matrices here.

A very popular algorithm for solution of equation of this type is

that of Trench [1], [2], [7], which actually computes the inverse of che

coefficient matrix. Bareiss [3] gave an elimination method which takes

advantage of the nature of the Toeplitz matrix. A very simple recursive

method known as Levinson's algorithm [A], [5] is applicable in the case

of linear prediction. In addition to the above, we also included a standard

Gauss elimination procedure, as implemented by IMSL* in subroutine LEQT1F.

2.0 Features of Tested Algorithms.

We will not describe the algorithms in detail since the references

are readily available. Instead we will only address ourselves to a brief

discussion of timing and storage requirements.

We assume that the matrix is specified by its first row or column

and that the constant vector is also given. Storage requirements beyond

these two vectors will be given.

^International Mathematical and Statistical Libraries,

7500 Bellaire Blvd.
Houson, TX 77036



2.1 Levinson's Algorithm [4] , [5]

This algorithm is extremely simple and fast, but is applicable only

to a special system of Toeplitz equations of the form:

i - \ / "i \
P, " ~ P

k i

'0 - - <Vl \ /
p
2 \

u>
I

• • ix-,.,

Pn-1 " ' p

The algorithm requires 0(n ) multiplications and divisions and only

n+1 auxiliary storage locations. Thus it is quite attractive for use in

the special instance where it is applicable.

2.2 Trench Inversion Algorithm [2], [7]

This algorithm assumes that T _ is strongly nonsingular; that is,

each principal minor is nonzero. This condition does not seem to be

unduly restrictive for the problems in which we are interested. Because

the algorithm computes the inverse of T ,. , it is then necessary to

multiply the constant vector by the inverse to obtain the solution of the

system of equations. The number of multiplications and divisions required

2
by the algorithm is 0(n ) thus the total number required for solution of

2
the equations is also 0(n ) . Auxiliary storage required can be as small

as 2n+l , although storage of the complete inverse is simpler and requires

2
an additional (n+1) locations.



2.3 Bareiss Algorithm [3]

This algorithm solves for the solution of the system of equations

2
directly, using an elimination procedure. The algorithm requires 0(n )

multiplications and divisions. About An+4 auxiliary storage locations

are necessary. Coding of the algorithm is difficult unless one can commit

2
much larger (about 2(n+l) locations) blocks of auxiliary storage.

2. A Gauss Elimination

The subroutine LEQT1F coded by IMSL is a standard Gauss elimination

routine which uses scaled partial pivoting, the numerical properties of

which are well documented [6], This subroutine was used in both double

and single precision form. The single precision form was used for comparison

with the other routines, and double precision was used as a standard for

comparison of accuracies.

3.0 Results

The results of the study are presented in two tables. One gives the

typical run times, while the other lists the error in the solutions

obtained. The algorithms were programmed in Fortran IV for the IBM 360

model 67 at the Naval Postgraduate School. Single precision (Real *4)

was used, which on the 360 embodies a mantissa of 6 hexadecimal digits,

about the equivalent of 6-7 decimal digits. The programs were compiled

under the H compiler, which generates optimized object code.

The Toeplitz matrix of coefficients was formed from a 250-point

autocorrelation function of a baseband signal pulse plus noise. Systems

of order A through 128 were generated by sampling this autocorrelation



function at different rates. Five separate sets of data were generated

by starting the sampling at different points; then thirty distinct systems

of equations were solved by each of the four algorithms, and by the double

precision LEQT1F. Because of the special form of the equations required

by the Levinson algorithm (Section 2.1), the constant vector was taken as

required by that algorithm.

Specifically, the sequence of elements for the first row of the

Toeplitz coefficient matrix were selected, for each data set, as follows.

Let a,, a~, .. a„,„ denote the elements of the first row of the auto-

correlation matrix previously mentioned. For each data set we begin with

an initial index, k , and a function s which was either taken as' n

128
s = 1 or s = —— , where n+1 is the order the system to be selected,
n n n+1 ' J

and was taken as 4, 8, 16, 32, 64, or 128. The subset of elements

selected from the a. sequence was then a, . , j = 1, 2 ..., n+1 .

-*
S
n

Five different data sets were chosen in this manner.

Our goal in testing the algorithms was to try to obtain seme information

about their execution times, and more particularly, about their accuracy.

Thus our test included quite large systems of equations, not because they

are of practical interest, but rather to determine something about the

accuracy limits of the algorithms.

While there are some variations, the information in Tables 1-3 show

the following: (i) The Levinson algorithm is about 3 times as fast as the

Trench algorithm, which is about the same speed as the Bareiss algorithm

for small systems and about 5% faster for large systems. The Bareiss

i
-I

algorithm is about 2 + -rj— times as fast as Gauss elimination, for large

values of n+1 . For small values (n+1 less than about 16) this relation



does not hold. This last result is to be expected since Gauss elimination

3
requires 0(n ) multiplications and divisions. (ii) The desirability

of the algorithms in terms of accuracy is generally the reverse of their

rating in terms of execution speeds. The Levinson algorithm gave results

good to only 3 significant digits on one system of order 16, and in two

instances failed completely (errors within an order of magnitude of the

solution) on systems of order 32. On one system of order 64, the algorithm

did well, while generally failing for order 128. This algorithm is

intended for positive definite matrices, which our test matrices did not

always satisfy.

The Trench algorithm has larger errors in virtually every case than

does the Levinson algorithm. The Bareiss algorithm does well, almost as

well overall as standard Gauss elimination, although it did completely

fail on two systems, one of order 32. This latter system caused all the

algorithms to fail, however.

The standard Gauss elimination algorithm completely failed on only

one system, the above noted one of order 32. Performance was marginal

(about two digits accurate) on 3 other systems. This information, we

believe, reveals more about the inherent difficulties of the equations

than the capabilities of the method, which are well known. Thus, any

particular algorithm should not be faulted for failing when Gauss elimination

fails.

Comparing the algorithms on this basis for various allowable

errors yields the information in Table 4. The success of the Bareiss

algorithm for higher accuracies is probably a result of fewer arithmetic



operations required, as this may be more important than numerical stability

on the small systems of equations involved there.

Finally, we observe that the tables of maximum errors and rms errors

yield essentially the same information, since the rms errors are usually

2-4 times smaller than the maximum errors. In table 4 the allowed rms

error was tabulated at a value of one-half the allowed maximum error to

partially compensate for that fact.

Order (n+1) Levinson Trench Bareiss Gauss

4 .7 1.7 1.6 2.9

8 1.8 6.2 6.0 9.8

16 6.2 20.2 20.3 43.6

32 22.2 74.4 76.2 245.0

64 80.2 281.3 294.1 1034.4

128 315.6 1107.3 1168.5 11118.0

TABLE 1. Average observed execution times (msec)



Case n+1 Levinson Trench Bareiss Gauss

4 1.5(-5) 1.7(-5) 1.4 (-5) 2.4(-5)
8 4.3(-5) 6.7(-6) 6.7(-6) 4.3(-5)

I 16 5.4(-5) 1.7(-4) 1.2(-4) 7.2(-5)
max norm of 32 4.4(-2) 3.3(-2) 7.2(-4) 3.0(-4)

solution 64 1.0 (-2) 1.3(-2) 2.0(-3) 5. 7 (-4)

1.4(1) 128 6.8(0) 2.6(1) 7.0(-2) 1.8(-1)

4 4.9(-5) 2.2(-4) 6.9(-5) 6.7(-5)
8 6.6(-5) 1.7(-4) 8.6(-5) 9.0(-5)

II 16 1.5(-4) 2.6(-4) 9.K-5) 1.0 (-4)

max norm of 32 1.5(-4) 6.1(-4) 8.6(-5) 9.0(-5)
solution 64 3.0(-4) 1.2(-3) 8.8(-5) 9.K-5)

1.7(0) 128 1.7(-1) 2.6(-2) 6.4(-4) 9.8(-4)

"

4 6.1 (-5) 1.0(-4) i.K-5) 1.5(-5)
8 9.7(-4) i.K-3) 1.7(-5) 7.2(-5)

III 16 8.5(-3) 1.2(-2) 1.4(-5) 2.0(-5)
max norm cf 32 3.2(0) 2.0(0) 3.K-2) i.K-2)

solution 64 4.7(-2) 3.2(-l) l.l(-l) 1.6(-3)
4.6(0) 128 4.4(-l) 3.0(1) 1.8(0) 4.0(-3)

4 3.2(-5) 3.1(-5) 2.0(-5) 2. 8 (-5)

8 6.6(-5) 5.2(-5) 3.8(-6) 7.0(-6)
IV 16 3.5(-4) 5.1 (-4) 9.3(-5) 2.6(-5)

max norm of 32 l.KD 1.3(1) 1.5(1) 4.4(-l)
solution 64 6.0(0) 9.6(-l) l.K-D 2.7(-2)

1.7(0) 128 1.7(-1) 2.0(-l) 7.3(-3) 3.0(-3)

4 7.7(-7) 1.5(-6) 1.0(--6) 9.5(-7)

8 8.3(-7) 1.6(-6) 1.3(-6) 8.3(-7)

V 16 3.5(-6) 6.1(-6) 6.2(-6) 5.2(-6)
max norm of 32 7.6(-5) 1.0(-4) 4.7(-5) 3.0(-5)

solution 64 3.2(-l) 3.0(-2) 3.0(-3) 5.9(-4)

1.7(0) 128 1.7(-1) 2.6(-2) 6.4(-4) 9.8(-4)

TABLE 2: Maximum observed errors



Case n+1 Levinson Trench Bareiss Gauss

4 1.0(-5) 9.4(-6) 8.6(-6) 1.4(-5)
8 2.2(-5) 4. 8 (-4) 4. 3 (-6) 2. 6 (-5)

I 16 2.7(-5) 1.2(-4) 8.3(-5) 4.K-5)
rms 32 2.2(-2) 1.7(-2) 2.8(-4) 1.3(-4)

of solution 64 3.4(-3) 6.4(-3) 1.0(-3) 3.0(-4)
3.5(0) 128 1.8(0) 7.4(0) 2. 4 (-2) 5.0(-2)

4 3. 9 (-5) 1.2(-4) 4.2(-5) 4.K-5)
8 4.4(-5) 1.0(-4) 4.4(-5) 4.4(-5)

II 16 7.2(-5) l.K-4) 4.7(-5) 4.8(-5)
rms 32 7.8(-5) 1.4(-4) 4.2(-5) 4.0(-5)

of solution 64 9.8(-5) 1.8(-4) 4.3(-5) 4.2(-5)
6.5(-l) 128 3.8(-2) 6.2(-3) 2.4(-4) 4.3(-4)

4 4.3(-5) 5.5(-5) 7.5(-6) 1.0(-5)
8 6.3(-4) 6.2(-4) 8.7(-6) 4.3<-5)

III 16 4.6(-3) 6.2(-3) 8.4(-6) 1.0(-5)

rms 32 1.5(0) 9.1(-1) 1.5(-2) 5.3(-3)

of solution 64 2.2(-2) 1.4(-1) 5.3(-2) 7.2(-4)

4.8(0) 128 1.6(-1) 1.3(1) 7.6(-l) 1.5 (-3)

4 3.K-5) 2.8(-5) 1.6(-5) 2.3 (-5)

8 4.0(-5) 3.6(-5) 2.5(-6) 3.1 (-6)

IV 16 1.8(-4) 3.K-4) 5.K-5) 1.2(-5)
rms 32 6.9(0) 8.1(0) 9.4(0) 2.7(-l)

of solution 64 2.2(0) 3.3(-l) 3.6(-2) 8.3(-3)

5.8(0) 128 7.4(-2) 7.0 (-2) 2.9(-3) 8.6(-4)

4 6.0(-7) 7.6(-7) 8.K-7) 6.8(-7)

8 5.K-7) 7.5(-7) 7.5(-7) 5.3 (-7)

V 16 2.2(-6) 2.8(-6) 3.5(-6) 3.4(-6)

. rms 32 2.9(-5) 4.2(-5) 2.3(-5) 1.5 (-5)

of solution 64 1.6(-1) 1.3(-2) 1.2(-3) 3.0(-4)

7.K-D 128 3.8(-2) 6.2(-3) 2.4(-4) 4.3C-4)

TABLE 3 : rms errors



Maximum error allowed Levinson Trench Bareiss Gauss

1.0(-5) 3-75% 3-75% 5 - 125% 4

1.0(-4) 12 - 70% 6 - 35% 18 - 106% 17

1.0(-3) 17 - 74% 15 - 65% 21 - 91% 23

1.0 (-2) 18 - 69% 17 - 65% 24 - 92% 26

l.O(-l) 21 - 75% 23 - 82% 26 - 93% 28

rms error allowed

5.0(-6) 3-75% 3-75% 5 - 125% 4

5.0(-5) 12 - 67% 7 - 39% 16 - 89% 18

5.0(-4) 16 - 70% 16 - 78% 21 - 91% 23

5.0(-3) 19 - 73% 17 - 65% 24 - 92% 26

5.0(-2) 23 - 79% 23 - 79% 27 - 93% 29

TABLE 4:

Successful runs as a percent of those which
were successful with Gauss elimination.

4.0 Conclusion

On the basis of our tests for numerical accuracy, we recommend the

use of Levinson' s algorithm for small (n+1 <_ 16) systems to which it is

applicable. The size of system successfully solved by Levinson'

s

algorithm is probably larger if positive definiteness can be assured,

but otherwise it appears large errors may occur. If Levinson' s algorithm

is not applicable, the algorithm of choice is the Bareiss algorithm. It

is slightly slower than the Trench algorithm on large systems, but almost

always gives better results, and is nearly as good as Gauss elimination

in most cases. Unless the inverse of the matrix is explicitly needed,

we cannot recommend the use of the Trench algorithm at all.

10
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